

T. H. Pulliam / NASA Ames

Modified Wave Number Analysis

• Arbitrary periodic functions can be decomposed into their Fourier components, which are in the form $e^{i\kappa x}$, where κ is the wavenumber. For a general κ

$$u(x) = c_{\kappa} e^{i\kappa x}$$

• The exact derivative in x

$$\frac{\partial u(x)}{\partial x} = i\kappa c_{\kappa} e^{i\kappa x} = i\kappa u(x)$$

• How will a finite-difference operator δ_x approximate the derivative of $u_j = c_{\kappa} e^{i\kappa x_j}$, $x_j = j\Delta x$

• By definition: $(i\kappa^*)$ is defined to be modified wave number)

$$\delta_x u_j = i\kappa^* c_\kappa e^{i\kappa x_j} = i\kappa^* u_j$$

- The particular form of $i\kappa^*$ depends on the choice of δ_x
- Note: We define $i\kappa^*$ as the modified wave number, leaving in the i. As we shall see below $i\kappa^*$ can be complex, i.e., have a real and imaginary part, the significance of which will become clear later

Modified Wave Number - Central Differencing

• Central Difference:

$$\delta_x^c \ u_j = \frac{u_{j+1} - u_{j-1}}{2\Delta x}$$

• Using $u_j = e^{i\kappa j\Delta x}$ we have

$$\begin{split} \delta_x^c u_j &= \frac{e^{i\kappa(j+1)\Delta x} - e^{i\kappa(j-1)\Delta x}}{2\Delta x} = \\ &\frac{e^{i\kappa\Delta x} - e^{-i\kappa\Delta x}}{2\Delta x} e^{i\kappa j\Delta x} \\ &= \frac{e^{i\kappa\Delta x} - e^{-i\kappa\Delta x}}{2\Delta x} u_j = i\kappa_c^* u_j \end{split}$$

• Using the definition of the complex exponential $e^{i\kappa\Delta x} = \cos(\kappa\Delta x) + i\sin(\kappa\Delta x)$ we have

$$i\kappa_c^* = i \frac{\sin(\kappa \Delta x)}{\Delta x}$$

- Modified wave number $i\kappa^*$ is an approximation to $i\kappa$.
- For δ_x^c , using the infinite series expansion of $sin(x) = x \frac{x^3}{3!} + \frac{x^5}{5!} + \cdots$

$$i \frac{\sin(\kappa \Delta x)}{\Delta x} = \frac{i}{\Delta x} \left[(\kappa \Delta x) - \frac{(\kappa \Delta x)^3}{6} + O(\Delta x^5) \right] = i\kappa \left[1 - \frac{(\kappa \Delta x)^2}{6} + O(\Delta x^4) \right]$$
(1)

• Therefore $i\kappa_c^* = i\kappa - i\kappa \frac{(\kappa \Delta x)^2}{6} + O(\Delta x^4) = i\kappa + O(\Delta x^2)$, a second order approximation.

1st Order Backward Differencing

• Backward Difference:

$$\delta_x^b \ u_j = \frac{u_j - u_{j-1}}{\Delta x}$$

• Using $u_j = e^{i\kappa j\Delta x}$ we have

$$\delta_x^b u_j = \frac{e^{i\kappa j\Delta x} - e^{i\kappa(j-1)\Delta x}}{\Delta x} = \frac{1 - e^{-i\kappa\Delta x}}{\Delta x} e^{i\kappa j\Delta x} = \frac{1 - e^{-i\kappa\Delta x}}{\Delta x} = \frac{1 -$$

 \bullet Expanding in sin and cos

$$i\kappa_b^* = \frac{1 - \cos(\kappa \Delta x) + i\sin(\kappa \Delta x)}{\Delta x}$$

• For δ_x^b , using the infinite series expansion of sin(x) and $cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \cdots$

$$i\kappa_b^* = \frac{1}{\Delta x} \left[\frac{(\kappa \Delta x)^2}{2} + O(\Delta x^4) \right]$$

$$+ \frac{1}{\Delta x} i \left[(\kappa \Delta x) - \frac{(\kappa \Delta x)^3}{6} + O(\Delta x^5) \right]$$

$$= \frac{\kappa^2 \Delta x}{2} + O(\Delta x^3) + i\kappa \left[1 - \frac{(\kappa \Delta x)^2}{6} + O(\Delta x^4) \right]$$

• Therefore $i\kappa_b^* = i\kappa + O(\Delta x)$ a first order approximation.

Modified Wave Number: Compact Schemes

- Modified Wave Number analysis can be also applied to the class of compact schemes
- Need to add definition:

$$\delta_x u_{j+m} = i\kappa^* e^{m \cdot i\kappa \Delta x} e^{i\kappa x_j} c_{\kappa} = i\kappa^* e^{m \cdot i\kappa \Delta x} u_j$$

• Fourth-order Padé scheme

$$(\delta_x u)_{j-1} + 4(\delta_x u)_j + (\delta_x u)_{j+1} = \frac{3}{\Delta x} (u_{j+1} - u_{j-1})$$

• The modified wavenumber for this scheme satisfies

$$i\kappa^* e^{-i\kappa\Delta x} + 4i\kappa^* + i\kappa^* e^{i\kappa\Delta x} = \frac{3}{\Delta x} (e^{i\kappa\Delta x} - e^{-i\kappa\Delta x})$$

• Collecting terms

$$i\kappa^* = \frac{3i\sin\kappa\Delta x}{(2+\cos\kappa\Delta x)\Delta x}$$

• Series expansion shows a 4^{th} Order scheme.

Solution to the Discrete PDE

• The discrete PDE is

$$\frac{\partial u(t)_j}{\partial t} + a\delta_x u(t)_j = 0$$

• Using separation of variables: $u(t)_j = e^{i\kappa j\Delta x} f(t)$ and applying the general result $\delta_x u_j = i\kappa^* u_j$

$$\frac{\partial e^{i\kappa j\Delta x} f(t)}{\partial t} + ai\kappa^* e^{i\kappa j\Delta x} f(t) = 0$$

• The ODE for f(t) is $\frac{\partial f(t)}{\partial t} + af(t)i\kappa^* = 0$ with solution $f(t) = f(0)e^{-ai\kappa^* t}$ giving

$$u(t)_j = c_{\kappa} e^{i\kappa j\Delta x} e^{-ai\kappa^* t}, \quad c_{\kappa} = f(0)$$

Exact Solution - Discrete Solution

• From Above we have:

$$u(t)_j = c_{\kappa} e^{i\kappa j\Delta x} e^{-ai\kappa^* t}, \quad c_{\kappa} = f(0)$$

• Comparing this discrete solution with the continuous solution

$$u(x,t) = c_{\kappa} e^{i\kappa x} e^{-ai\kappa t}$$

• The difference between κ and κ^* shows how the choice of δ_x affects the phase and amplitude of the computed solution.

Effect of Modified Wave

• Central differencing $i\kappa_c^* = i\kappa - i\kappa \frac{(\kappa \Delta x)^2}{6} + O(\Delta x^4)$, then

$$u(t)_{j} = c_{\kappa} e^{i\kappa j\Delta x} e^{-ai\kappa - i\kappa \frac{(\kappa \Delta x)^{2}}{6} + O(\Delta x^{4}) t} =$$

$$c_{\kappa} e^{i\kappa j\Delta x} e^{-ai\kappa \left[1 - \frac{(\kappa \Delta x)^{2}}{6} + O(\Delta x^{4})\right] t}$$

• Dropping the $O(\Delta x^4)$ term and defining $a^* = a \left[1 - \frac{(\kappa \Delta x)^2}{6} \right]$ the modified wave speed

$$u(t)_j = c_{\kappa} e^{i\kappa j\Delta x} e^{-a^* i\kappa t}$$

• This shows that each wave slows down by $\frac{(\kappa \Delta x)^2}{6}$ which is a function of κ .

Effect on Phase Speed

- Define $\frac{a^*}{a} = \frac{\kappa^*}{\kappa}$
- For second order central differencing $\frac{a^*}{a} = \frac{\sin \kappa \Delta x}{\kappa \Delta x}$

Effect of Modified Wave: Complex $i\kappa^*$

• Following the same reasoning for the backward differencing $i\kappa_b^*$

$$u(t)_{j} = c_{\kappa} e^{i\kappa j\Delta x} e^{-a\left[\frac{\kappa^{2}\Delta x}{2} + i\kappa\left[1 - \frac{(\kappa\Delta x)^{2}}{6}\right]\right]t}$$

- Slowing down the waves and also damping them by $\frac{\kappa^2 \Delta x}{2}$
- Note: The Modified Wave Number is complex and contributes to both the phase and amplitude errors

Modified Wave Number

- Exact PDE solution: $u(x,t) = c_{\kappa}e^{i\kappa x}e^{-ai\kappa t}$
- Discrete Solution: $u(t)_j = c_{\kappa} e^{i\kappa j\Delta x} e^{-ai\kappa^* t}$
- The $Imag(i\kappa^*) \kappa$ represents dispersion, phase, frequency error
- The $Real(i\kappa^*)$ creates a amplification error.
- Note: $|e^{-ai\kappa t}| = 1$, no amplitude change for exact PDE solution
- From discrete solution: $|e^{-ai\kappa^*t}| = |e^{Real(-ai\kappa^*t)}|$
 - If $Real(-ai\kappa^*t) < 0$: Decay for a > 0, t > 0
 - If $Real(-ai\kappa^*t) > 0$: Growth for a > 0, t > 0
- To assess amplitude error plot $|e^{Real(-i\kappa^*)}|$

Modified Wave Number: Centered Schemes

- 2^{nd} Order Central: $B(-1,0,1)/(2\Delta x)$
- 4^{th} Order Central: $B(1, -8, 0, 8, -1)/(12\Delta x)$
- 6^{th} Order Central: $B(-1, 9, -45, 0, 45, -9, 1)/(30\Delta x)$
- $4^{th} 6^{th}$ Order Centered Compact: $B(1, \alpha, 1)^{-1}B(-\beta, -2\phi, 0, 2\phi, \beta)/(4\Delta x)$ with $\phi = \frac{4+2\alpha}{3}$ and $\beta = \frac{4-\alpha}{3}$

Modified Wave Number: Upwind Schemes

• 1^{st} Order : $B(-1,1,0)/(\Delta x)$

• 2^{nd} Order : $B(1, -4, 3, 0, 0)/(2\Delta x)$

• 3^{rd} Order: $B(1, -6, 3, 2, 0)/(6\Delta x)$

